Cloning and Functional Characterization of c-Jun NH2-Terminal Kinase from the Mediterranean Species of the Whitefly Bemisia tabaci Complex
نویسندگان
چکیده
c-Jun NH2-terminal kinase (JNK) signaling is a highly conserved pathway that controls gene transcription in response to a wide variety of biological and environmental stresses. In this study, a JNK from the invasive Mediterranean (MED) species of the whitefly Bemisia tabaci complex was cloned and characterized. The full-length JNK cDNA of MED consists of 1565 bp, with an 1176 bp open reading frame encoding 392 amino acids. Comparison of JNK amino acid sequences among different species showed that the sequences of JNKs are highly conserved. To reveal its biological function, the gene expression and functional activation of JNK were analyzed during various stress conditions. Quantitative RT-PCR analysis showed that the relative expression level of JNK remained hardly unchanged when the insects were transferred from cotton (a suitable host plant) to tobacco (an unsuitable host plant), infected with bacteria and treated with high and low temperatures. However, the mRNA level of JNK significantly increased when treated with fungal pathogens. Furthermore, we found that the amount of phosphorylated JNK increased significantly after fungal infection, while there is no obvious change for phosphorylated p38 and ERK. Our results indicate that the whitefly JNK plays an important role in whitefly's immune responses to fungal infection.
منابع مشابه
The Immune Strategy and Stress Response of the Mediterranean Species of the Bemisia tabaci Complex to an Orally Delivered Bacterial Pathogen
BACKGROUND The whitefly, Bemisia tabaci, a notorious agricultural pest, has complex relationships with diverse microbes. The interactions of the whitefly with entomopathogens as well as its endosymbionts have received great attention, because of their potential importance in developing novel whitefly control technologies. To this end, a comprehensive understanding on the whitefly defense system...
متن کاملWill the Real Bemisia tabaci Please Stand Up?
Since Panayiotis Gennadius first identified the whitefly, Aleyrodes tabaci in 1889, there have been numerous revisions of the taxonomy of what has since become one of the world's most damaging insect pests. Most of the taxonomic revisions have been based on synonymising different species under the name Bemisia tabaci. It is now considered that there is sufficient biological, behavioural and mol...
متن کاملDraft genome sequence of "Candidatus Hamiltonella defensa," an endosymbiont of the whitefly Bemisia tabaci.
"Candidatus Hamiltonella defensa" is a facultative endosymbiont of the whitefly Bemisia tabaci. Herein, we report the first draft genome sequence of "Candidatus Hamiltonella defensa" from the invasive Mediterranean cryptic species of the B. tabaci complex. The 1.84-Mbp genome sequence comprises 404 contigs and contains 1,806 predicted protein-coding genes.
متن کاملCloning, Expression and Characterization of Mitochondrial Manganese Superoxide Dismutase from the Whitefly, Bemisia tabaci
A mitochondrial manganese superoxide dismutase from an invasive species of the whitefly Bemisia tabaci complex (Bt-mMnSOD) was cloned and analyzed. The full length cDNA of Bt-mMnSOD is 1210 bp with a 675 bp open reading frame, corresponding to 224 amino acids, which include 25 residues of the mitochondrial targeting sequence. Compared with various vertebrate and invertebrate animals, the MnSOD ...
متن کاملThe Feeding Rate of Predatory Mites on Life Stages of Bemisia tabaci Mediterranean Species
The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) continues to be a serious threat to crops worldwide. The UK holds Protected Zone status against this pest and, as a result, B. tabaci entering on plant material is subjected to a policy of eradication. There has recently been a shift from Middle East-Asia Minor 1 to the more chemical resistant Mediterranean species ent...
متن کامل